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ABSTRACT

The deployment of machine learning classifiers in high-stakes do-
mains requires well-calibrated confidence scores for model predic-
tions. In this paper we show that standard calibration measurement
approaches used in machine learning can obscure significant sys-
tematic miscalibration with respect to variables of interest. We
demonstrate this phenomenon on multiple well-known datasets, and
show that it can persist after the application of widely-used recali-
bration methods. To mitigate this issue, we propose strategies for
detection, visualization, and quantification of systematic miscalibra-
tion. We also examine the limitations of score-based recalibration
methods and explore potential modifications. Finally, we discuss
the implications of these findings, emphasizing that an understand-
ing of calibration beyond simple aggregate measures is crucial for
endeavors such as fairness and model interpretability.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques

1 INTRODUCTION

Predictive models built by machine learning algorithms are increas-
ingly informing decisions across high-stakes applications such as
medicine [47], employment [11], and criminal justice [23]. There is
also broad recent interest in developing collaborative systems where
information from both humans and machine learning models is used
to make predictions and decisions [5, 16, 29, 51, 57]. An important
aspect of machine predictions in such contexts is calibration. In
particular, for machine learning classifiers, a well-calibrated model
is one where the class probabilities produced by the model closely
match the empirical frequency of how often the model’s predicted
class matches the true class label. Calibration error can be measured
empirically by the difference between a model’s self-perceived accu-
racy (the probability it assigns to the predicted class, also known as
confidence) and the actual accuracy of its predictions as a function
of confidence.

In practice, however, it is well-documented that machine learning
classifiers such as deep neural networks tend to produce poorly-
calibrated class probabilities [19, 39, 53]. As a result, a variety of
recalibration techniques have been developed, which aim to ensure
that a model’s confidence matches its true accuracy. The most
widely used approach is the post-hoc calibration method, which
uses a separate labeled dataset to learn a mapping from the original
model’s class probabilities to calibrated probabilities, often using
a relatively simple one-dimensional mapping (e.g., [30, 32, 43]).
These methods have been shown to generally work well in the sense
that the empirical calibration error of the model tends to improve
significantly after this post-hoc calibration step. A typical approach
is to estimate the expected calibration error empirically on a labeled
test set and compare this metric before and after recalibration is
performed. A commonly used metric in this context in the machine
learning literature is the expected calibration error (ECE, [19]),
which we define more precisely in Section 3.
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In this paper we show that aggregate measures of calibration error
such as ECE can hide significant systematic miscalibration, where
the calibration error of a model varies significantly as a function
of a variable of interest. The variable of interest can be an input
variable to the model or some other metadata variable—we focus
in particular in this paper on real-valued variables. An example of
such a variable is age, for prediction problems involving individuals.
It has been well-documented that machine learning classifiers often
exhibit “age bias,” where a model’s accuracy systematically varies as
a function of age. This bias has been demonstrated across a number
of application areas, including in facial image analysis (for gender
classification [4], emotion detection [28], and face recognition [34]),
in credit-scoring [49], and in prediction of hospital mortality [42].
We show in this paper that such biases can occur not just in accuracy
but also in calibration, for instance, a model can be systematically
overconfident for some age ranges and underconfident for others.

As an illustrative example, consider a simple neural-network clas-
sifier trained to predict the presence of cardiovascular disease using a
benchmark medical diagnosis dataset1. After applying Platt scaling
(a standard post-hoc calibration technique [43]), the model appears
to be well-calibrated in the sense that the aggregate calibration error,
as measured by ECE, has a relatively low value of about 0.8% (val-
ues of 10% to 20% are relatively common in practice for machine
learning models). This low ECE is reflected in the reliability dia-
gram shown in Figure 1a. Reliability diagrams [38] plot empirical
classification accuracy or error as a function of a model’s predicted
class probability or confidence. A well-calibrated model will have
a curve close to the diagonal on the plot, as in Figure 1a. Thus,
based on both the reliability diagram and and the low ECE value
of 0.8%, a user of this model might reasonably conclude that the
model is generally well-calibrated. However, comparing the model’s
actual classification error and the model’s predicted classification
error, with respect to the variable Patient Age, as illustrated in Fig-
ure 1b, reveals an undesirable pattern of systematic miscalibration.
The model is underconfident by upwards of five percentage points
for younger patients, and is significantly overconfident for older
patients.

In this paper we demonstrate that this type of systematic miscal-
ibration appears to be relatively common in practice across well-
known machine learning models and datasets, and that standard
calibration measures such as ECE can hide such miscalibration. In
particular, our contributions are as follows: (i) we introduce a new
calibration metric (VECE) that assesses calibration on a per-variable
basis, (ii) we propose corresponding variable-wise calibration plots
for visualization of systematic miscalibration; (iii) we perform a
case study investigating systematic miscalibration over tabular, text,
and image datasets, with a focus on interpretation and visualization;
and (iv) we show that a relatively simple variable-wise tree-based
calibration method can significantly reduce systematic miscalibra-
tion across a variety of classifiers and datasets. Our code is available
online at https://github.com/markellekelly/variable-wise-calibration.

2 RELATED WORK

Visualization of Model Performance by Variable: Although
there are many visualization techniques that support diagnosis and

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
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(a) Reliability diagram (b) Variable-wise calibration plot

Figure 1: LOESS-smoothed calibration plots, with 95% confidence intervals, for a neural network predicting cardiovascular disease, after
recalibration with Platt scaling: (a) reliability diagram, (b) actual and model-predicted error as a function of patient age. This dataset consists
of 70,000 records of patient data (49,000 train, 6,000 validation, 15,000 test), with a binary prediction task of determining the presence of
cardiovascular disease. Both plots examine the differences between the model’s predicted error (1-the confidence score, or probability the
model assigns to its predictions) and the model’s actual error (1-accuracy). The variable-wise calibration plot compares these with respect to
patient age, revealing disparities that are not apparent in the reliability diagram. Note: here we include a smoothed reliability diagram based on
error for ease of comparison with the variable-wise calibration plot; we include a more traditional, binned reliability diagram in the Appendix.

understanding of predictive models in general, there is limited prior
work on visualization of model performance with respect to a partic-
ular variable of interest. One such technique is partial dependence
plots [18, 36], which visualize the effect of an input feature of in-
terest on model predictions. Another approach is dashboards such
as FairVis [10] and Fairlearn [7] which enable the exploration of
model performance (e.g., accuracy, false positive rate) across various
data subgroups. However, there is no prior work we are aware for
visualization of calibration properties of a model as a function of a
variable of interest, i.e., how a model’s own predictions of accuracy
(or error) vary as a function of a particular variable.

Quantification of Model Performance by Variable: Beyond
visualizations such as fairness dashboards, mathematical methods
for detecting systematic variation in model performance have also
been developed, centered on the concept of disaggregated eval-
uation: computing metrics of interest individually for sensitive
sub-populations [35, 46]. For model calibration in particular, sev-
eral group-wise evaluation techniques have been introduced, which
compute calibration error across various categorical subsets of the
data [20, 40]. However, none of this prior work focuses on quantify-
ing and characterizing calibration error with respect to continuous
variables.

Visualization for Uncertainty and Calibration: The use of
different visualization methods for presenting information about
uncertainty is well-established in prior work [8,45]. Given the popu-
larity of machine learning across many different application domains
(e.g., for AI-assisted decision making), there has been significant
recent interest in applying these general techniques to provide tools
to better understand the predictions of machine learning models and
their associated uncertainties. For example, pie charts or icon charts
can be used to visualize the uncertainty (a single probability) about
a binary model prediction [6]. Beyond including model confidence
for single predictions (e.g., [59]), more global uncertainty visualiza-
tions have also been used, such as plotting continuous (regression)
model predictions with 95% confidence intervals against a variable
of interest [3, 12].

In the more specific context of understanding calibration prop-

erties of machine learning classifiers, visualization methods have
generally been limited to reliability diagrams, which consist of bar
charts that plot the model’s predicted probabilities against true class
frequencies [17, 37], with extensions such as resampled “consis-
tency bars” to communicate additional data-driven uncertainty about
degrees of miscalibration [9]. Our work expands on reliability di-
agrams, introducing a new type of variable-dependent calibration
plot that explores calibration as a function of a particular variable of
interest, drawing from the literature on uncertainty visualization.

3 QUANTIFYING CALIBRATION ERROR

Consider a classification problem mapping inputs x to predictions
for labels y ∈ 1, . . . ,K. Let f be a black-box classifier which outputs
label probabilities f (x) ∈ [0,1]K for each x ∈ X . Then, for the
standard 0-1 loss function, the predicted label is ŷ= argmax( f (x))∈
1, . . . ,K and the corresponding confidence score is s= s(x) =Pf (y=
ŷ|x)=max( f (x)). It is of interest to determine whether such a model
is well-calibrated, that is, whether its confidence matches the true
probability that a prediction is correct.

For a given confidence score s, we define Acc(s) = P(y = ŷ|s) =
E [I[y = ŷ|s]].Then the ℓp calibration error (CE), as a function of the
confidence score s, is defined as the difference between accuracy
and confidence score [32]:

CE(s) = |P(y = ŷ|s)− s|p = |Acc(s)− s|p (1)

where p ≥ 1. In this paper, we will focus on the expectation of the
ℓ1 calibration error with p = 1, known as the ECE:

ECE = EP(s)[CE(s)]

=
∫

s
P(s)|P(y = ŷ|s)− s|ds (2)

where an ECE of zero corresponds to “perfect” calibration. In
practice, ECE is often estimated empirically on a labeled test dataset
by creating B bins over s according to some binning scheme [19]:

ÊCE =
B

∑
b=1

nb

n
|Accb −Confb| (3)



where nb is the number of datapoints in bin b, n is the total number
of datapoints, and Accb and Confb are the accuracy and average
value of confidence s, respectively, in bin b = 1, . . . ,B.

Now, consider a real-valued variable V taking values v. To eval-
uate model calibration with respect to V , we introduce the notion
of variable-wise calibration error (VCE), defined pointwise as a
function of v:

VCE(v) =
∣∣P(y = ŷ|v)−E[s(v)]

∣∣ (4)

where E[s(v)] is the expected score conditioned on a particular value
v:

E[s(v)] =
∫

s
s ·P(s|v)ds (5)

In general, conditioning on v will induce a distribution over inputs
x, which in turn induces a distribution P(s|v) over scores s. For
example, in the context of Figure 1b, at v = 45, the model accuracy
P(y= ŷ|v) is estimated to be 100−21= 79% and the expected score
E[s(v)] is estimated to be 76%, so the VCE(v) is approximately 3%.

The expected value of VCE(v), with respect to V , is defined as:

VECE = EP(v)[VCE(v)] =
∫

v
P(v)VCE(v)dv (6)

Note that this differs from the definition of ECE in Equation 2 in that
it measures the calibration error with respect to variable V , rather
than with respect to the score s—we investigate the differences
between the two in more detail in the Appendix.

As with ECE, we can compute an empirical estimate of VECE
by binning, where bins b are now defined by some binning scheme
(e.g., equal weight) over values v of the variable V (rather than over
scores s):

V̂ECE =
B′

∑
b=1

nb

n
|Accb −Confb| (7)

where b is some bin corresponding to a sub-range of V , nb is the
number of points within this bin, and Accb and Confb are empirical
estimates of the model’s accuracy and the model’s average confi-
dence (average score) within bin b.

In the Appendix, we establish several theoretical results regarding
the ECE and VECE. In particular, we prove that the ECE and VECE
can differ significantly, by a gap of up to 0.5− 1

2K , where K is the
number of classes (e.g., in the binary case, a gap of up to 0.25).
We also show that, when a model is consistently over-confident (as
defined precisely in the Appendix), the ECE and VECE are equal.

4 MITIGATION OF SYSTEMATIC MISCALIBRATION

4.1 Variable-wise Calibration Plots
Classical reliability diagrams, which plot a model’s confidence
scores against its true accuracy, are widely used in calibration evalua-
tion [19, 37]. As a complement to reliability diagrams, we introduce
variable-wise calibration plots, building on the concept of variable-
wise calibration error (VECE) from Section 3. These plots visualize
the differences in accuracy and confidence along the dimension
of a variable of interest, allowing for visual interpretation of any
variable-wise miscalibration. Figure 1b provides an example of a
variable-wise calibration plot for the variable Age.

Variable-wise calibration plots display smoothed curves for the
model’s predicted and actual error rates as a function of the vari-
able of interest V . To put the differences in curves into perspective,
these plots include 95% confidence bars for the actual and predicted
error. [3] found that including 95% confidence intervals in visual-
izations improved the confidence of machine learning experts in
making model selection decisions. Compared to related uncertainty
visualization techniques, error bars are visually simple and easy to in-
terpret, as long as they are explicitly labeled (e.g., as 95% confidence

intervals) [6]. One limitation is that error bars can over-emphasize
the range within them, although this was shown for a general au-
dience [13] and may be less of a concern for users with statistical
backgrounds.

We recommend that variable-wise plots also include a histogram
of the data with respect to V . This aggregate distributional infor-
mation provides important context, and is often a key component
of multi-view data visualizations [24, 26, 50]. In particular, the
histograms in variable-wise calibration plots function as a non-
parametric expression of uncertainty [44, 48, 56].

For ease of interpretation in the results below we use the model’s
error rate and predicted error, rather than accuracy and confidence,
although they are equivalent. Particularly for models with high accu-
racy, this framing emphasizes important differences in performance
(e.g., “doubling the error rate from two to four percent” rather than
“reducing the accuracy from 96% to 94%”). We note, however, that
the choice to present this “negatively” (e.g., five percent error rate)
or “positively” (e.g., 95% accuracy) could alter users’ perceptions
of the risks involved, potentially affecting their decisions [14, 52].

To generate these plots, we first compute the individual error I[y ̸=
ŷ] and predicted error 1−s(x) = 1−max( f (x)) for each observation.
We then construct nonparametric error curves with LOESS, with
quadratic local fit and an assumed symmetric distribution of the
errors, with empirically-chosen smoothing factors between 0.8 and
0.9. (Further details are available in our code.) This approach allows
us to obtain 95% confidence bars based on the standard error.

In Section 5 we explore how these plots can be used to character-
ize miscalibration across different models, datasets, and variables.

4.2 Recalibration Methods

We find empirically that standard score-based recalibration tech-
niques often reduce ECE while neglecting variable-wise systematic
miscalibration. Because calibration error can vary as a function of a
feature of interest v, we propose incorporating information about v
during recalibration.

We introduce the concept of variable-wise recalibration, a family
of recalibration methods that adjust confidence scores with respect
to some variable of interest V . As an illustrative example, we per-
form experiments in Section 5 with a modification of probability
calibration trees [33]. This technique involves performing logis-
tic calibration separately for data splits, defined by decision trees
trained over the input space. We alter the method to train decision
trees for y with only v as input, then perform beta calibration at each
leaf [30]. In the multi-class case, we use Dirichlet calibration, an ex-
tension of beta calibration for k-class classification [31]. Our use of
split-based recalibration using decision trees is intended to provide a
straightforward illustration of the potential benefits of variable-wise
calibration, rather than to provide a state-of-the-art methodology
that can balance ECE and VECE (which we leave to future work).

5 SYSTEMATIC MISCALIBRATION IN PRACTICE

In this section, we explore several examples where a model appears
to be well-calibrated according to ECE, but is hiding systematic mis-
calibration relative to some variable of interest. For each dataset and
variable of interest V , we evaluate several score-based calibration
methods and our variable-wise recalibration, based on ECE, VECE,
and variable-wise calibration plots. In particular, we calibrate with
scaling-binning [32], Platt scaling [43], beta calibration [30], and
(for the multi-class case) Dirichlet calibration [31]. These examples
demonstrate the application and interpretation of our variable-wise
calibration plots as well as the potential benefits of variable-wise
recalibration. We show that variable-wise calibration plots enable
meaningful characterization of the relationships between variables of
interest, predicted, and true empirical error, providing more detailed
model insight than a single number (i.e., ECE or VECE).



(a) Uncalibrated (b) Beta-calibrated (c) Variable-wise calibrated

Figure 2: Variable-wise calibration plots for the Adult Income model for Age

(a) Uncalibrated (b) Beta-calibrated (c) Variable-wise calibrated

Figure 3: Variable-wise calibration plots for the Yelp model for Review Length

For each example, the model is trained on a subset of the full
dataset. The remaining data is split into a calibration subset and a test
subset. Each calibration method is trained on the same calibration
set, and all metrics and figures are produced from the final test set.
The ECE and VECE are computed with an equal-support binning
scheme, with B = B′ = 10. Additional details regarding datasets,
models, and calibration can be found in the Appendix.

5.1 Adult Census Records: Predicting Income
The UCI Adult Income dataset2 is comprised of 1994 Census records,
where the goal is to predict whether an individual’s annual income is
greater than $50,000. We model this data with a simple feed-forward
neural network and we explore the model’s calibration error with
respect to age (i.e. let V =age). Uncalibrated, this model has an
ECE and VECE of 20.67% (see Table 1). The ECE and VECE are
equal precisely because of the model’s consistent overconfidence
as a function of both the confidence score and the V variable (see
Appendix). The overconfidence with respect to age is reflected in
the variable-wise calibration plot (Figure 2a). The model’s error
rate varies significantly as a function of age, with very high error for
individuals around age 50, and much lower error for younger and
older people. However, its confidence remains nearly constant at
close to 100% (i.e., a predicted error close to 0%) across all ages.

After recalibrating, the ECE is dramatically reduced, with beta
calibration achieving an ECE of 1.65%. However, the corresponding
VECE is still high at over 9%. As shown in Figure 2b, the model’s
self-predicted error has increased substantially, but this estimate
remains near-constant for all ages. Thus, despite a significant im-
provement in ECE, this recalibrated model still harbors unfairness

2https://archive.ics.uci.edu/ml/datasets/adult

ECE VECE
Uncalibrated 20.67% 20.67%
Scaling-binning 2.27% 9.25%
Platt scaling 4.57% 10.13%
Beta calibration 1.65% 9.59%
Variable-wise calibration 1.64% 2.11%

Table 1: Adult Income model calibration error

with respect to age, exhibiting overconfidence in its predictions for
individuals in the 35-65 age range, and underconfidence for those
outside of it. As the model is no longer consistently overconfident,
the ECE and VECE diverge, as predicted theoretically.

Our simple variable-wise calibration obtains a significantly lower
VECE of 2.11%, while simultaneously reducing the ECE. This im-
provement in VECE is reflected in Figure 2c. The model’s predicted
error now varies with age to match the true error rate. In this case,
variable-wise recalibration improves the age-wise systematic mis-
calibration of the model, without detriment to the overall calibration
error.

5.2 Yelp Reviews: Predicting Sentiment
To explore the phenomenon of systematic calibration in an NLP
context, we use a fine-tuned large-scale language model, BERT [27],
on the Yelp review dataset3. The goal is to predict whether a review
has a positive or negative rating based on its text. Note that, in this
context, there are no interpretable features being provided directly

3https://www.yelp.com/dataset
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(a) Uncalibrated (b) Calibrated with Platt scaling (c) Variable-wise calibrated

Figure 4: Variable-wise calibration plots for the Bank Marketing model for Age

(a) Uncalibrated (b) Dirichlet calibrated (c) Variable-wise calibrated

Figure 5: Variable-wise calibration plots for the CIFAR-10H model for Median Reaction Time

as input to the model. Instead, to better diagnose model behavior,
we can analyze real-valued characteristics of the text, such as the
length of each review or statistics related to how often certain parts-
of-speech occur in the review. Here we focus on review length in
characters.

Figure 3a shows the model’s error and predicted error with respect
to review length. The error rate is lowest for reviews around 300-700
characters, around the median review length. Very short and very
long reviews are associated with a higher error rate. Again, this
model is consistently overconfident, with an uncalibrated ECE and
VECE of 1.93% (see Table 2).

ECE VECE
Uncalibrated 1.93% 1.93%
Scaling-binning 4.23% 4.23%
Platt scaling 3.04% 0.64%
Beta calibration 1.73% 0.37%
Variable-wise calibration 1.70% 0.23%

Table 2: Yelp model calibration error

Of the score-based recalibration methods, beta calibration obtains
the lowest ECE of 1.73% and a substantially reduced VECE of
0.37%. Figure 3b reflects this; the model’s predicted error aligns
more closely with its actual error rate, although it is still notably
overconfident for very short reviews. Again, we observe that the
ECE and VECE are equal for the uncalibrated, consistently overcon-
fident model, and diverge after recalibration; these observations hold
true in general for each example dataset.

Variable-wise recalibration reduces the VECE slightly further,

while offering a small improvement to the overall ECE. After
variable-wise calibration, the predicted error curve matches the
true relationship between review length and true error rate more
faithfully, reducing overconfidence for short reviews (Figure 3c).

5.3 Bank Marketing: Predicting Customer Subscriptions

We also investigate miscalibration on a simple neural network mod-
eling the UCI Bank Marketing dataset4. The model predicts whether
a bank customer will subscribe to a bank term deposit as a result of
direct marketing.

The uncalibrated model is again overconfident, with ECE and
VECE over 4.5% (see Table 3). Consider the calibration error with
respect to customer age, both before (Figure 4a) and after (Figure
4b) recalibration. The best-performing recalibration technique, Platt
scaling, uniformly increases the predicted error across age, resulting
in underconfidence for most ages and overconfidence at the edges
of the distribution. The ECE and VECE are both reduced, but the
2.83% VECE can be further improved.

ECE VECE
Uncalibrated 4.69% 4.69%
Scaling-binning 4.37% 3.39%
Platt scaling 2.38% 2.83%
Beta calibration 2.48% 2.77%
Variable-wise calibration 2.10% 0.52%

Table 3: Bank Marketing model calibration error

4https://archive.ics.uci.edu/ml/datasets/bank+marketing
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Variable-wise recalibration achieves the lowest ECE, while re-
ducing VECE to about half of one percent. Figure 4c reflects this
improvement. The predicted error after variable-wise recalibration
matches the true error rate more closely, reducing the miscalibration
with respect to customer age.

5.4 CIFAR-10H: Image Classification
As a multi-class example, we investigate variable-wise miscalibra-
tion on CIFAR-10H, a 10-class image dataset including labels and
reaction times from human annotators [41]. We use a standard deep
learning image classification architecture (a DenseNet model) to pre-
dict the image category. Instead of Platt scaling and beta calibration,
here we use Dirichlet calibration, to accomodate multiple classes.

Consider the calibration error with respect to median annotator
reaction time. Dirichlet calibration achieves the lowest overall ECE;
variable-wise calibration obtains the lowest VECE (see Table 4).
As shown in Figure 5, variable-wise recalibration reduces under-
confidence for examples with low median reaction times (where
the majority of data points lie). It is intuitive that taking annotator
reaction time into account could improve overall calibration, and in
this case it does achieve competitive ECE and VECE.

ECE VECE
Uncalibrated 1.90% 1.92%
Scaling-binning 3.83% 3.60%
Dirichlet calibration 0.80% 1.12%
Variable-wise calibration 1.31% 0.60%

Table 4: CIFAR-10H model calibration error

6 DISCUSSION

Complex uncertainty visualizations may be overwhelming or dif-
ficult to interpret for the general public—for a layperson, a lower-
precision categorization of uncertainty or calibration might be pre-
ferred [6, 54]. On the other hand, detailed information about uncer-
tainty information enables knowledgeable users (such as developers
of machine learning models) to calibrate their trust in a model [59]
and make decisions more confidently [3]. Thus, our visualizations
are likely to be most useful for (i) machine learning developers (e.g.,
in evaluating a model in development), and (ii) users (or potential
users) of models (e.g., in determining whether or not a model should
be deployed), who have the numeracy and statistical literacy to
understand concepts such as probability and confidence intervals.

Medical diagnosis with machine learning models is an example of
a domain where variable-wise calibration plots may be particularly
useful. In the application of machine learning in clinical contexts,
the variation between training datasets and prediction (test) sets (for
example due to changes in age distributions of patients) can lead
to significant degradation in model performance [58]. In particu-
lar, clinical radiology is an area where machine learning is rapidly
moving from research labs into clinical use: since 2018 the U.S.
Food and Drug Administration (FDA) has doubled the number of
machine learning models approved for clinical use in radiology [2].
While there is broad consensus among radiologists that machine
learning methods show considerable promise, there is also a general
sense that these methods may have “blind spots” and cannot be
fully trusted. To quote a recent American College of Radiologist’s
survey [1]:

Establishing the safety and efficacy of AI algorithms be-
fore clinical use was critically important to the survey
respondents; more than 60% indicated they want some
form of external validation of AI models across repre-
sentative data sets, and an equal number indicated they
would like to be able to assess the performance of an AI

model on their own patient data before deploying it into
their clinical workflows.

In this context, methods for systematic characterization of model
performance can play an important diagnostic role in the develop-
ment and deployment of prediction models [2, 15]. More concretely,
radiologists could create variable-wise calibration plots using a set
of their own patient data to evaluate a model. These plots would pro-
vide insight into when the model is more or less likely to be correct
or overconfident, across variables such as age and weight, helping
inform the practitioners’ decisions on when to trust the model or
whether to use it at all. Similarly, [21] note the importance of such
global plots for “fairness-focused debugging,” determining whether
an issue the radiologist experiences is a “one-off” or part of a wider
systematic problem (i.e. miscalibration). However, we note that
visualizations such as these capture only part of the full picture and,
alone, can lead to over-trust and limited, superficial evaluation [25];
thus, they should be used as part of a more comprehensive model
evaluation workflow.

A user study to evaluate the effectiveness of variable-wise calibra-
tion plots is an important next step. For example, these visualizations
could be tested in the context of decision-making for medical diag-
nosis. Criteria to evaluate include comprehension (whether users
can correctly interpret the plots), performance (whether the plots
improve the accuracy of a user’s decision-making, e.g. compared to
a reliability diagram or single confidence score), and trust (whether
the plots affect users’ trust in the model or confidence in their own
decisions) [22, 55].

Limitations In this work we focused on characterization and
mitigation of miscalibration for a single variable at a time; analyz-
ing miscalibration as a function of multiple variable is a potentially
interesting direction for future work. For example, although we did
not observe recalibration with respect to one variable V worsening
VECE for another variable, this behavior has not been analyzed
theoretically. In addition, the tree-based variable-based calibration
technique used in the paper is primarily for illustration; the develop-
ment of new methods for simultaneously reducing score-based and
variable-based miscalibration also merits further investigation.

7 CONCLUSIONS

In this paper we demonstrated that the visualization of calibration
from the perspective of specific variables of interest can offer new
insight into model behavior and can provide actionable avenues
for improvement. For example, the detection and mitigation of
systematic miscalibration across continuous variables is essential
for ensuring the fairness of machine learning models, particularly
for demographic variables such as age. We showed that traditional
measures of calibration such as ECE and reliability diagrams can
hide significant miscalibration with respect to variables of potential
importance to a developer or user of a classification model. To better
detect and characterize this systematic miscalibration, we introduced
the VECE measure and corresponding variable-wise calibration
plots. In a case study across several datasets and models, we showed
that variable-wise calibration plots, VECE, and variable-wise re-
calibration are empirically useful for understanding and mitigating
systematic miscalibration. Looking forward, we recommend moving
beyond purely score-based calibration analysis to mitigate biases in
measurement of calibration error.
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A PROOFS FOR SECTION 5
Theorem A.1 (VECE bound). There exist K-ary classifiers f and
variables V such that the classifier f has ECE = 0 and variable-wise
VECE = 0.5− 1

2K .

Proof. Let V be a continuous variable with density P(v). Recall
that VECE =

∫
v P(v)|P(y = ŷ|v)−E[s|v]|dv where P(y = ŷ|v) is

the accuracy of model f as a function of v, and the score s is the
probability that the model assigns to its label prediction ŷ. The
reliability diagram for a K-ary classifier has scores s ∈ [ 1

K ,1] where
the leftmost value for this interval is a result of the fact that the score
is defined as the maximum of K class probabilities. Let γ = 0.5+ 1

2K
be the midpoint of this interval.

Assume that the scores s have a uniform distribution of the form
s ∼U(γ −α,γ +α), where α is some constant and 0 ≤ α ≤ 0.25,
and that the scores s and the variable V are independent. Further
assume that the accuracy of the model f depends on v and s in the
following manner

P(y = ŷ|v ≤ vt ,s ≤ γ) = 1−α P(y = ŷ|v ≤ vt ,s > γ) = 1

P(y = ŷ|v > vt ,s ≤ γ) =
1
K

P(y = ŷ|v > vt ,s > γ) =
1
K
+α

where vt is defined such that P(v ≤ vt) = P(v > vt) = 0.5.
The marginal accuracy as a function of the score (marginalizing

over v) can be written as

P(y = ŷ|s ≤ γ) = γ − α

2

P(y = ŷ|s > γ) = γ +
α

2
.

The marginal accuracy as a function of z (marginalizing over s) is

P(y = ŷ|z ≤ zt) = 1− α

2

P(y = ŷ|z > zt) =
1
K
+

α

2
.

This setup is designed so that the score is close to the accuracy as
a function of s (to minimize ECE), but the variable-wise expected
scores E[s|z] = γ are relatively far away from accuracy as a function
of z.

Under these assumptions we can write the ECE as

ECE =
∫

s
p(s) · |P(y = ŷ|s)− s|ds

=
∫

γ

γ−α

1
2α

|γ − α

2
− s|ds+

∫
γ+α

γ

1
2α

|γ + α

2
− s|ds

=
α

4
.

(8)

We can write the VECE as∫ vt

−∞

P(v)|P(y = ŷ|v)−E[s|v]|dv+
∫

∞

vt

P(v)|P(y = ŷ|v)−E[s|v]|dv

=
∫ vt

−∞

P(v) · |1− α

2
− γ|dv+

∫
∞

vt

P(v) · | 1
K
+

α

2
− γ|dv

= (0.5− 1
2K

− α

2
)
∫

v
P(v)dv

= 0.5− 1
2K

− α

2
.

(9)

Thus, as α → 0, VECE → (0.5− 1
2K ) and ECE → 0.

Theorem A.2 (ECE bound). There exist K-ary classifiers f and
variables V such that the classifier f has VECE = 0 and ECE =
0.5− 1

2K .

Proof. Let V be a continuous variable with density P(V ). Recall that
a K-ary classifier has scores s ∈ [ 1

K ,1], where we let γ = 0.5+ 1
2K

be the midpoint of this interval. Assume that f produces scores from
two uniform distributions, with equal probability: s ∼U( 1

K , 1
K +α)

and s ∼U(1−α,1), where α is some constant 0 ≤ α ≤ 0.25, and
that the scores s and the variable V are independent. Finally, suppose
the accuracy of the model P(y = ŷ) = γ is independent of s and V .

Under these assumptions we can write the VECE as

VECE =
∫

∞

−∞

P(v) · |P(y = ŷ|v)−E[s|v]|dv

=
∫

∞

−∞

P(v) · |γ − γ|dv

= 0.

(10)

We can write the ECE as

ECE =
∫

s
p(s) · |P(y = ŷ|s)− s|ds

=
1
2

∫ 1
K +α

1
K

1
α
|γ − s|ds+

1
2

∫ 1

1−α

1
α
|γ − s|ds

= 0.5− 1
2K

− α

2
.

(11)

Thus, as α → 0, ECE → (0.5− 1
2K ) and VECE = 0.

Definition A.3 (Consistent overconfidence). Let f be a classifier
with scores s. For a variable V taking values v, f is consistently
overconfident if E[s|v]> P(y = ŷ|v),∀v, i.e., the expected value of
the model’s scores f as a function of v is always greater than the
true accuracy as a function of v.

Consistent underconfidence is defined analogously with E[s|v]<
P(y = ŷ|v),∀v. In the special case where the variable V is defined as
the score itself, we have s > P(y = ŷ|s),∀s, etc.

Theorem A.4 (Equality conditions for ECE and VECE). Let f be a
classifier that is consistently under- or over-confident with respect
both to s and any variable V . Then the ECE and VECE of f are
equal.

Proof. Without loss of generality, suppose f is consistently under-
confident with respect to its scores s and V .

Then we have, by consistent underconfidence and the law of total
probability:

ECE =
∫

s
p(s) · |P(y = ŷ|s)− s|ds

=
∫

s
p(s) ·P(y = ŷ|s)ds−E[s]

= P(y = ŷ)−E[s]

(12)

VECE =
∫

v
p(v) · |P(y = ŷ|v)−E[s|v]|dv

=
∫

v
p(v) ·P(y = ŷ|v)dv−

∫
v

p(v)E[s|v]dv·

=
∫

v
p(v) ·P(y = ŷ|v)dv−E[s]

= P(y = ŷ)−E[s] = ECE

(13)



B CALIBRATION, MODEL, AND DATASET DETAILS

Here, we include additional information for each dataset and model
discussed in Section 5. Code for reproducing all tables and plots is
available online5.

On each dataset, we test several existing recalibration techniques:
Platt scaling, scaling-binning, beta calibration, and (for the multi-
class case) Dirichlet calibration. For scaling-binning, we calibrate
over 10 bins, and for Dirichlet calibration, we use a lambda value of
1e-3, values chosen based on the respective authors’ provided exam-
ples. Here and in Section 7, we present the uncalibrated and variable-
wise calibrated output, along with the best-performing score-based
calibration method (for the Adult and Yelp datasets, beta calibration;
for Bank Marketing, Platt scaling; for CIFAR, Dirichlet calibration).

Our variable-wise recalibration is performed as follows. Given
the calibration set, a decision tree classifier is trained to predict the
outcome y with input v (the single variable of interest). We use a
maximum depth of two and a minimum leaf size of 0.1∗ the size of
the calibration set. The calibration set is then split according to the
leaf nodes of the trained decision tree, and separately the rest of the
dataset is split according to the same rules. Standard beta calibration
is then performed separately for each split, using the subset of the
original calibration set as the new calibration set, and computing
recalibrated probabilities for the subset of the original dataset.

We note the VECE for each numeric variable in each dataset
before and after the recalibration described. We find in general
empirically that variable-wise calibration with respect to one variable
is not detrimental to the VECE of other variables.

B.1 Cardiovascular Disease (Introduction)

Figure 6: Standard reliability diagram to supplement the smoothed
plot in Figure 1a.

B.2 Adult Income

The Adult Income dataset was modeled with a multi-layer percep-
tron, with two hidden layers of sizes 100 and 75. The model’s
accuracy is 79%. Of the 48,842 observations, 32,561 were used for
training, 2,500 were used for calibration, and 13,781 were used for
testing. The dataset includes six continuous variables: age, fnlwgt
(the estimated number of people an individual represents), education-
num (a number representing the individual’s years of education),
capital-gain, capital-loss, and hours-per-week (the number of hours
per week that an individual works).

Based on the beta-calibrated model, education-num and age rank
the highest in VECE, as shown in Section 6. For all six variables,
VECE is reduced by performing recalibration with respect to age.

5https://github.com/markellekelly/variable-wise-calibration

Uncalibrated Beta Variable-wise
education-num 20.67% 9.95% 8.53%
age 20.67% 9.59% 2.11%
hours-per-week 20.67% 7.94% 6.02%
fnlwgt 20.67% 5.06% 4.10%
capital-gain 20.67% 1.50% 1.39%
capital-loss 20.67% 1.50% 1.39%

Table 5: VECE for numeric variables in the Adult Income dataset:
uncalibrated, beta-calibrated, and after variable-wise recalibration
with respect to age.

B.3 Yelp
The Yelp dataset was modeled with a fine-tuned BERT model. The
model’s accuracy is 97.7%. 100,000 observations were randomly
sampled from the full Yelp dataset. Of these, 70,500 were used for
training, 10,000 were used for calibration, and 19,500 were used
for testing. Several continuous features were generated from the
raw text reviews, including length in characters, number of special
characters, and proportions of each part of speech. Based on the beta-
calibrated model, review length ranked highest in VECE, followed
by proportion of stop words, as shown in Table 6.

Uncalibrated Beta Variable-wise
Length (characters) 1.93% 0.37% 0.23%
Stop-word Proportion 1.93% 0.29% 0.28%
Named Entity Count 1.93% 0.21% 0.22%

Table 6: VECE for numeric variables in the Yelp dataset: uncali-
brated, beta-calibrated, and after variable-wise recalibration with
respect to length in characters.

B.4 Bank Marketing
The Bank Marketing dataset was modeled with a multi-layer per-
ceptron, with two hidden layers of sizes 100 and 75. The model’s
accuracy is 88.9%. Of the 45,211 total observations, 31,647 were
used for training, 1,000 were used for calibration, and 12,564 were
used for testing. Based on the scaling-binning-calibrated model,
account balance ranked highest in VECE, followed by age, as shown
in Table 7.

Uncalibrated Platt-
scaling Variable-wise

Account balance 5.35% 4.17% 3.22%
Age 4.69% 2.83% 0.52%

Table 7: VECE for numeric variables in the Bank Marketing dataset:
uncalibrated, calibrated with Platt scaling, and after variable-wise
recalibration with respect to age.

B.5 CIFAR-10H
The CIFAR-10H dataset was modeled with a DenseNet model. The
model’s accuracy is 96.6%. Of the 10,000 total observations, 4,057
were used for training, 2,000 were used for calibration, and 3,943
were used for testing.

https://github.com/markellekelly/variable-wise-calibration
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